

Preliminary

Overview

The LC78836M is a 16 -bit CMOS D/A converter that includes $8 \times$ oversampling filters on chip. It is pin compatible with the LC78835M and LC78835KM.

Functions and Features

Digital Filter Block

- $8 \times$ oversampling filters: Three FIR filter stages (33rdorder, 13th-order, and ninth-order filters)
- De-emphasis filter: Support for $32 \mathrm{kHz}, 44.1 \mathrm{kHz}$, and 48 kHz Fs frequencies
- Soft muting
- Noise shaper
- Supports double-speed operation

D/A Converter Block

- 16-bit dynamic level shifting D/A conversion
- Two D/A converter channels on a single chle (synchronous outputs)
- On-chip output operational amplifiers
- System clock: Supports $384 \mathrm{fs}, 392 \mathrm{fs}, 448 \mathrm{fs}$, and 512 fs clocks

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{SNS}_{\mathrm{SS}}=0 \mathrm{Y}$

Allowable Operating Ranges

Parameter	Symbol	Conditions	min	typ	max	Unit
Supply voltage	$V_{\text {DD }}$		3.0	5.0	5.5	V
Referenge yoiltage (higle)	Vreffr		$\mathrm{V}_{\mathrm{DD}}-0.3$		V_{DD}	V
Referehce voltage (bw)	Vrefl		0		0.3	V
Operating temperature ${ }^{\text {a }}$	Topr		-30		+75	${ }^{\circ} \mathrm{C}$

- Any ald all SANYO products described or contained herein do not have specifications that can handle applicationsf that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical afd/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other
parameters) listed in products specifications of any and all SANYO products described or contained exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other
parameters) listed in products specifications of any and all SANYO products described or contained herein.
- Single 5 V power súpply
- Low-voltage operation (3 V) also possible
- Si-gate CMO§ process for lovw power dissipation

Package Dimension

unit: mm
3155-MFP24

Digital Audio 16-bit D/A Converter with On-Chip Digital Filters

DC Characteristics at $\mathbf{T a}=-\mathbf{3 0}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	min	typ	max	Unit
Input high level voltage (1)	$\mathrm{V}_{\text {IH }} 1$	Pins $3,4,5,6,7,13,14,15,16,17$, and 18	2.2			V
Input low level voltage (1)	$\mathrm{V}_{\text {IL }} 1$	Pins $3,4,5,6,7,13,14,15,16,17$, and 18		-	0.8	V
Input high level voltage (2)	$\mathrm{V}_{\mathrm{H}}{ }^{2}$	Pin 11	$0.7 \mathrm{~V}_{\mathrm{DD}}$			V
Input low level voltage (2)	$\mathrm{V}_{\mathrm{IL}}{ }^{2}$	Pin 11			$\cdots 3 V_{D D}$	V
Output high level voltage	V_{OH}	Pin 9: $\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	24	4		V
Output low level voltage	V_{OL}	Pin 9: $\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$		+	0.4	\% V
Input leakage current	IL	Pins $3,4,5,6,7,11,13,14,15,16,17$, and 18 : $V_{1}=V_{S S}, V_{D D}$			$+25$	$\mu \mathrm{A}$

AC Characteristics at $\mathrm{Ta}=-\mathbf{3 0}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}_{\mathrm{A}}$

Audio Input Waveforms

Electrical Characteristics (1)
at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{DV} \mathrm{DD}=\mathrm{VrefH}=5.0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=\mathrm{VrefL}=0 \mathrm{~V}$ unless otherwise specified

Parameter	Symbol	Conditions	min	typ	max	Unit
DAC resolution	RES			16		bits
Total harmonic distortion	THD	For $\mathrm{f}=1 \mathrm{kHz}, 0 \mathrm{~dB}^{* 1}$			0.08	\%
Dynamic range	DR	For $\mathrm{f}=1 \mathrm{kHz},-60 \mathrm{~dB}$	92	94		dB
Crosstalk	CT	For $\mathrm{f}=1 \mathrm{kHz}, 0 \mathrm{~dB}$			-85	dB
Signal-to-noise ratio	S/N	JIS-A		* 100		dB
Full-scale output voltage	VFS			$\cdots 3.0$		Vp-p
Power dissipation	Pd	*2		90	135	mW
Output load resistance	RL	Pins 21 and 23	9	Whers		$\mathrm{k} \Omega$

Note: 1. 0 dB means full scale.
2. XIN amplitude (pin 11): 1.5 to $3.5 \mathrm{~V}, \mathrm{f}_{\mathrm{X}}=16.9344 \mathrm{MHz}$

The test circuit should be based on the sample application circuit.

Electrical Characteristics (2)

at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{DV}_{\mathrm{DD}}=\mathrm{VrefH}=3.0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=\mathrm{V}$ refL o viunless otheryise specified

Parameter	Symbol		min	typ	max	Unit
DAC resolution	RES	Fi		16		bits
Total harmonic distortion	THD	For $\mathrm{f}=1 \mathrm{kHz}, 0 \mathrm{~dB}$ *1 $\mathrm{c}^{\text {a }}$			0.10	\%
Dynamic range	DR	For $\mathrm{f}=1 \mathrm{kHz},-60 \mathrm{~dB}$,	\% 90	92		dB
Crosstalk	CT	For $\mathrm{f}=1 \mathrm{kHz}, 0 \mathrm{~dB}$, $\hat{\text { a }}$			-85	dB
Signal-to-noise ratio	S/N	JIS-A ${ }^{\text {a }}$	94	98		dB
Full-scale output voltage	VFS	\%	1.65	1.8	1.95	Vp-p
Power dissipation	Pd			20	30	mW
Output load resistance	RL	Pins 21 and 23 为 4	30			k Ω

Note: 1. 0 dB means full scale.
2. XIN amplitude (pin 11): 0.9 to $2.1 \mathrm{~V}, \mathrm{f}_{\mathrm{X}}=16.93 .44 \mathrm{MHz}$

The test circuit should be based on the sample applícation circuif ts

Block Diagram

Pin Assignment

LC78836M

Operating Description

1. Digital Filters

The LC78836M performs the following calculations.

Output to the D/A converter

$$
\begin{aligned}
& \text { fs*: double-speed input } \\
& \text { fs*: } 2 \times \mathrm{fs}
\end{aligned}
$$

- Oversampling

The oversampling cigeuit consists of $2 \times$ interpolation filters (implemented as FIR filters) connected in series. In standard-speed operation the circuif implements $8 \times$ oversampling by connecting three stages of FIR filters (33rd, 13 th, and ninth ordeis) in sefies. In double speed operation, the circuit implements $4 \times$ oversampling by connecting twestages of FIR filters (33rd and ninth orders) in series. See page 9 for the filter characteristics.

- De-mphasis

The LC788364 ipplements digital de-emphasis with a first-order IIR filter. The filter coefficients correspond to samplidy freqüencies (fs fof $32,44.1$, and 48 kHz . (The frequencies are doubled in double-speed operation.)
See page 10 fot the filte characteristics when de-emphasis is on.

- De -emphasis on/off switching

De-emphasis on EMP = high
De-emphäsis off: EMP = low

- Filter coefficient selection

FS1	L	H	H	L
FS2	L	L	H	H
fs	44.1 kHz		32 kHz	48 kHz

- Soft muting

Soft muting is implemented using the on-chip digital attenuator.
The attenuator attenuation is given by the following formula.

```
\(20 \log (A T T / 64) d B\)
```

Here, ATT is an integer between 0 and 64 inclusive. However, the attenuation is $-\infty$ ben $\mathrm{ATT}=0$, When the MUTE pin is set high, the ATT value is reduced one level at a time towards zero, and the attenuation changes, moving towards $-\infty$. When the MUTE pin is set low, the ATT value is increased rie leveltata time towards 64 , and the attenuation changes, moving towards 0 dB . The time required for the soff mute fünctionte complete is about 1024/fs.

MUTE

- Noise shaper

The LC78836M uses a first-order noise shanper toreduee re-quantization noise in the output of the DF calculations.

- Double-speed support

The LC78836M supports double-speed CD playback when the D/N pin is set high. In this mode, the BCLK, LRCK, and DATA inputs should be inputwith twice the frequencies they have in standard-speed mode. Note that the system clock (the XIN pinecock) has the same frequefty as it does in standard-speed mode. The LC78836M supports double-speed operafigh when the system clock is a 384 fs or 512 fs clock, but does not support this mode for 392 fs and 448 fs clocks Since the CC 7883 M enters test mode for these settings, they should not be used.

Standard-speed mode D / N phr H low
Double-speed mofe D / N pin= high
2. Initialization

The LC78836M must be ihitithzed then power is first applied or when the system clock is switched. Initialization is executed by seffing the INITB pinglow. While that pin is low, after the power supply voltage stabilizes, input the XIN, BCLK, and LRCESignals, and waitat least one LRCK period, as shown in the figure below. When INIFB is low, ill 16 bits of the digital filter outputs will be zeros, and the D/A converter outputs (CH1OUT and $\mathrm{CH}_{2} \mathrm{OUT}$) will be analog 0 (a pofential essentially equal to $\left.\left(\mathrm{V}_{\mathrm{REFH}}+\mathrm{V}_{\mathrm{REFL}}\right) / 2\right)$.

3. System Clock

The LC78836M supports four system clocks: $384 \mathrm{fs}, 392 \mathrm{fs}, 448 \mathrm{fs}$, and 512 fs . The CKSL1 and CKSL2 pins select the clock used.

CKSL1	CKSL2	System clock
L	L	384 fs
L	H	392 fs
H	L	448 fs
H	H	512 fs

- CKOUT pin

For a 392 fs clock: Outputs a 196 fs clock (system clock/2) All other clocks: Outputs the system clock

4. Digital Audio Data Input

The digital audio data is a 16-bit serial ignal in ansbefist twos complement format. The 16-bit serial data is input from the DATA pin to an internal register on the risingedge of BCLK, and is latched on the next LRCK rising or falling edge.

5. D/A Converter Block

The LC78836M incorporates an independent 16-bit D/A converter and an operational amplifier for signal output for each channel (CH 1 and CH 2). It adopts a dynamic level shifting conversion technique that uses a resistor-string D/A converter, a PWM (pulse width modulation) D/A converter, and a level shifting D/A converfer, (See figure.)

- Resistor-string D/A converter

Thîs is at 8 bit Dot converter in which a total of $256\left(=2^{8}\right)$ unit-resistance resistors are connected in series and the 4 potential applied to the ends of that resistor string is voltage divided into 256 equal intervals. Of these resistor-
divided potentials, twof adjacent potentials, V1 and V2, are selected by a switching circuit according to the value of the upper 8 bits of the data. These two potentials are output to the PWM D/A converter. Note that these potentials are related as follows:

$$
\mathrm{V} 2-\mathrm{V} 1=(\mathrm{VH}-\mathrm{VL}) / 256
$$

- PWM D/A converter

This is a 4-bit D/A converter that divides (by 16) the interval between the two potentials, V1 and V2, output by the resistor-string D/A converter. This circuit outputs one or the other of the V1 and V2 potentials from the CH1OUT (or CH2OUT) pin according to the value of the middle 4 bits of the data (D7 to D4).

- Level shifting D/A converter

This 4-bit D/A converter is implemented by connecting the variable resistors VRH and VRL in series at the ends of the resistor-string D/A converter resistors. The values of the VRH and VRL variable resistors are modified according to the value of the low-order 4 bits of the data (D3 to D0) as follows:

- The value of VRH + VRL is held fixed regardless of the value of the data.
- The values of VRH and VRL are changed in R/256 unit steps (where R is the value of the resistor-string D/A converter unit resistors) over the range zero to $15 \cdot \mathrm{R} / 256$.
This causes the resistor-string D/A converter V1 and V2 outputs to change in $\Delta \mathrm{V} / 256$ steps (where $\Delta \mathrm{V}=$ ($\mathrm{VH}-\mathrm{VL}$)/256) over the range 0 to $63 \times \Delta \mathrm{V} / 256$ according to the value of the fower 4 bits of the data.
- VrefH/L and REFH/L pins

The VrefH/L pins, which provide a reference voltage to the resistor string are normallyset to V refH $A V_{D D}$ and VrefL = AGND. Note that capacitors (about $10 \mu \mathrm{~F}$) should be connectef between REfHe and AGND and between REFL and AGND.
When VrefH is 5.0 V and VrefL is 0 V , the LC78836M outputs its maximuphoutput amplitudee as the range 0.5 V (minimum) to 3.5 V (maximum) ($3.0 \mathrm{Vp}-\mathrm{p}$) for 0 dB playback according to we builtin RH ad RL resistors.

Filter Characteristics (logical values)

Standard speed: $8 \times$ oversampling Double speed: $4 \times$ oversampling
Ripple: Less than $\pm 0.1 \mathrm{~dB}$
Attenuation: -40 dB or lower
Standard speed (de-emphasis off)

Double speed (de-emphasis off)

De-Emphasis ON Transient Bandwidth Characteristics

- Standard Speed

Sample Application Circuit

LPF: Low-pass filter ($\mathrm{Fc}=20 \mathrm{kHz}$)
$D V_{D D}=A V_{D D}=3.0$ to $5.5(\mathrm{~V})$
$D V_{D D}=A V_{D D}=3.0$ to $5.5(\mathrm{~V})$
Note: 1 m In the diagratm $D V_{D D}$ and DGND are for the digital system, and $A V_{D D}$ and AGND are for the analog system. DGND and AGND must be connected to the digitital syistem ane anialog system grounds, respectively.
2. A low:impédance highri-stability power supply (equivalent to a commercial three-terminal regulator) must be used for $\mathrm{AV}_{\mathrm{DD}}$ and VrefH .
3. Since latchup can octir if there is a discrepancy in the pin $8\left(\mathrm{DV}_{\mathrm{DD}}\right)$ and pin $24\left(\mathrm{AV}_{\mathrm{DD}}\right)$ power supply voltage application timing, application circuits should be designed. so that the pin 8 and pin 24 power supply voltages are applied at the same time.
4. Provide the XIN pitin clock input quickly after power is applied. The IC may be destroyed if the XIN pin is held fixed at either the high or low level when power is applied.

LC78836M

Power Supply Application Timing

1. The analog power supply $\left(\mathrm{AV}_{\mathrm{DD}}\right)$ and the digital power supply $\left(\mathrm{DV}_{\mathrm{DD}}\right)$ must be turned on at the same time and must be turned off at the same time.
2. If discrepancies in the analog and digital power supply timings cannot be avoided, the timings must fulfill the following conditions.

- The difference between times when the power supplies rise must be 3 ms or shorter (See fgure 1)
- If the time difference is greater than 3 ms , then the power supply that rises (falls) first must bave a rise time (fall

Figure 2

- Specifications of any and all SANYOprotucts described or contained herein stipulate the performance, characteristics, and functions afthe described products in the independent state, and are not guarantees of the performafice, characteristics s, mand functions of the described products as mounted in the customer's products or equipment. To vegify symptoms and states that cannot be evaluated in an independent device, the customer should atways evelalate and test devices mounted in the customer's products or equipment.

SANYO Electric Gow etd strives to supply high-quality high-reliability products. However, any and all semicondictor products with seme probability. It is possible that these probabilistic failures could give fise to accidents or elents that could endanger human lives, that could give rise to smoke or fire, or that couldreause damage to other property. When designing equipment, adopt safety measures so that these kinds of aceidents or events cannot occur. Such measures include but are not limited to protective circuits and êtror preventioneircuits for safe design, redundant design, and structural design.
In the eventithet any or all \$ANYO products (including technical data, services) described or contained herein are contiolled uneler any of applicable local export control laws and regulations, such products must not be exponed without obtaining the export license from the authorities concerned in accordance with the alovetaws
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mectabical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
Any and afifinformation described or contained herein are subject to change without notice due to product/fechnology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.

- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 1998. Specifications and information herein are subject to change without notice.

